Global Arc

1
Search International Offerings

You can now simultaneously browse international opportunities and on-campus courses; the goal is to plan coursework — before and/or after your trip — that will deepen your experiences abroad.

2
Add Your Favorites

Log in and add international activities and relevant courses to your Global Arc.

3
Get Advice

Download your Arc and share with your academic adviser, who can help you refine your choices.

4
Enroll, Apply and Commit

Register for on-campus classes through TigerHub, and apply for international experiences using Princeton’s Global Programs System.

5
Revisit and Continue Building

Return to the Global Arc throughout your Princeton career as you delve deeper into your interests. 

Refine search results

Subject

Displaying 1 - 10 of 29
Close icon
Molecular Biology
From DNA to Human Complexity
This lecture and laboratory course will acquaint non-biology majors with the theory and practice of modern molecular biology, focusing on topics of current interest to society. The course will cover basic molecular biology topics such as information storage and readout by DNA, RNA, and proteins. The course will address how recent scientific advances influence issues relevant to humanity including stem cells and CRISPR; the human microbiome and bacterial pathogens; and how the human genome can be used to understand the evolution of modern humans. Two 90-minute lectures, one three-hour laboratory.
Close icon
Molecular Biology
Laboratory Research in the Life Sciences
This course will introduce students to laboratory research through a 6-week original research investigation. Although lecture and discussion will be incorporated as needed, by far the largest part of the course will consist of authentic hands-on research. Students will learn how to perform essential laboratory techniques, to design experiments, and to analyze and interpret experimental data. Students will gain experience in both written and oral presentation of scientific results. In 2016, the research focus will be "Biological GPS: Migration of Cells in Living Organisms."
Close icon
Molecular Biology
Introduction to Cellular and Molecular Biology
Important concepts and elements of molecular biology, biochemistry, genetics, and cell biology, are examined in an experimental context. This course fulfills the requirement for students majoring in the biological sciences and satisfies the biology requirement for entrance into medical school. Two 90-minute lectures, one three-hour laboratory.
Close icon
Molecular Biology
Food, Drugs and Society
The current environment in the US for the use and abuse of foods and drugs will be examined from a scientific fact-based perspective. Historical, economic, marketing, political, and public health drivers will be considered. Specific topics include government dietary recommendations (food politics), dietary supplements (from Vitamins to herbal extracts), pharmacology and ethical drug development (sulfa drugs, NSAIDS, etc), addiction and substance abuse (alcohol, nicotine, stimulants, opioids, etc), Alzheimer's disease and the problem of long-term care in an aging population, and Psychedelic drug use and abuse (psilocybin, mescaline, LSD, etc).
Close icon
Molecular Biology
Quantitative Methods in Cell and Molecular Biology
Modern biology research increasingly relies on quantitative tools to make precise measurements of cell state. This course will provide an introduction to the experimental techniques and computational methods that enable the quantitative study of biological systems. We will start with an intro to programming using Python and we will employ the learned skills to analyze proteomics and sequencing data for studying gene networks within and across species, modeling biochemical reactions to study the dynamics of gene and protein networks, and extracting information about the spatial organization of biological systems using fluorescence imaging.
Close icon
Molecular Biology
Experimental Molecular Biology
MOL320 is a spring semester, sophomore-level alternative to MOL350. Individuals who are interested in an early research experience that substitutes for MOL350-Laboratory in Molecular Biology can enroll in this course. The purpose of MOL320 is to prepare you to be a contributing member of a research lab and to foster creative, critical thinking and effective communication skills. While completing original research, you will employ techniques used by cell and molecular biologists and developmental geneticists. You will practice extracting pertinent information from scientific literature and will generate a final research report on your work.
Close icon
Molecular Biology
Molecular and Cellular Immunology
A broad survey of the field of immunology and the mammalian immune system. The cellular and molecular basis of innate and acquired immunity will be discussed in detail. The course will provide frequent exemplars drawn from human biology in health and disease. Prerequisite: MOL214.
Close icon
Molecular Biology
Genetics
Basic principles of genetics illustrated with examples from prokaryote and eukaryote organisms. Classical genetic techniques as well as molecular and genomic approaches will be discussed. The evolving concept of the gene, of genetic interactions and gene networks, as well as chromosome mechanics will be the focus of the course. Selected topics will include gene regulation, cancer genetics, the human biome, imprinting, and stem cells. Two 90-minute lectures, one precept. Prerequisite: MOL 214 or permission of instructor.
Close icon
Molecular Biology
Biochemistry
Fundamental concepts of biomolecular structure and function will be discussed, with an emphasis on principles of thermodynamics, binding and catalysis. A major portion of the course will focus on metabolism and its logic and regulation. Prerequisites: MOL 214 and either CHM 302, 304, 304B, or 337.
Close icon
Molecular Biology
Cell and Developmental Biology
The course will investigate the roles that gene regulation, cell-cell communication, cell adhesion, cell motility, signal transduction and intracellular trafficking play in the commitment, differentiation and assembly of cells into specialized tissues. The mechanisms that underlie development of multicellular organisms, from C. elegans to humans, will be examined using biochemical, genetic and cell biological approaches. In-class problem solving, group work, and active learning approaches will be used to emphasize key concepts and analyze experimental data. Two 90-minute lectures, one precept. Prerequisite: MOL 214.