Global Arc

1
Search International Offerings

You can now simultaneously browse international opportunities and on-campus courses; the goal is to plan coursework — before and/or after your trip — that will deepen your experiences abroad.

2
Add Your Favorites

Log in and add international activities and relevant courses to your Global Arc.

3
Get Advice

Download your Arc and share with your academic adviser, who can help you refine your choices.

4
Enroll, Apply and Commit

Register for on-campus classes through TigerHub, and apply for international experiences using Princeton’s Global Programs System.

5
Revisit and Continue Building

Return to the Global Arc throughout your Princeton career as you delve deeper into your interests. 

Refine search results

Subject

Displaying 21 - 30 of 39
Close icon
Planetary Systems: Their Diversity and Evolution
Examines the diversity of recently discovered planetary systems in terms of fundamental physical and chemical processes and what this diversity implies about the origin and evolution of our own planetary system. Topics include: the formation and dynamics of planets and satellites, planetary migration, the evolution of planetary interiors, surfaces and atmospheres, the occurrence of water and organics, and the habitability of planets and planetary systems. Recent discoveries from planetary missions and extrasolar planet observations are emphasized. Prerequisites: GEO 207, 255, or instructor's permission. Two 90-minute lectures.
Close icon
The Physics of Glaciers
Glaciers and ice sheets are important elements of Earth's global climate system. This course introduces undergraduate and graduate students to the history of ice on Earth, contemporary glaciology, and the interactions between climate, glaciers, landforms, and sea level. Drawing from basic physical concepts, lab experiments, numerical modeling, and geological observations, we tackle important physical processes in glaciology, and equip students with data analysis and modeling skills. Students will gain an appreciation for the importance of ice sheets for the global climate system, and the large gaps that remain in our understanding.
Close icon
Mineralogy
Minerals are the fundamental building blocks of the Earth. They are the primary recorders of its past history. A knowledge of minerals and their properties is an essential underlying component of most other disciplines in the geosciences. This course will provide a survey of the properties of the major rock-forming minerals. Topics include crystallography, crystal chemistry, mineral thermodynamics and mineral occurrence. Emphasis will be on the role of minerals in understanding geological processes. Laboratories will focus on hand specimen identification and modern analytical techniques.
Close icon
Microbial Life - A Geobiological View
Microbes were the first life forms on Earth and are the most abundant life forms today. Their metabolisms underpin the cycling of carbon, nitrogen, and other important elements through Earth systems. This course will cover the fundamentals of microbial physiology and ecology and examine how microbial activities have shaped modern and ancient environments, with the goal of illustrating the profound influence of microbial life on our planet for over 3 billion years.
Close icon
Environmental Microbiology
The study of microbial biogeochemistry and microbial ecology. Beginning with the physical/chemical characteristics and constraints of microbial metabolism, we will investigate the role of bacteria in elemental cycles, in soil, sediment, and marine and freshwater communities, in bioremediation and chemical transformations. Prerequisites: One 300-level course in chemistry or biology, or instructor's permission. Two 90-minute classes, this course is normally offered in the Spring.
Close icon
Environmental Aqueous Geochemistry
Application of quantitative chemical principles to the study of natural waters. Includes equilibrium computations, weathering and diagenetic processes, precipitation of chemical sediments, and pollution of natural waters. Two lectures. Prerequisite: one year of college chemistry. Previous or concurrent enrollment in CHM 306 recommended.
Close icon
Physics and Chemistry of Earth's Interior
The Earth is a physical system whose past and present state can be studied within the framework of physics and chemistry. Topics include current concepts of geophysics and the physics and chemistry of Earth materials; origin and evolution of the Earth; and nature of dynamic processes in its interior. One emphasis is to relate geologic processes on a macroscopic scale to the fundamental materials properties of minerals and rocks. Three lectures. Prerequisites: one year of college-level chemistry or physics (preferably both) and calculus. Offered alternately with 424.
Close icon
Topics in Earth Science
These courses cover one or more advanced topics in modern Earth science. They are offered only when there is an opportunity to present material not included in the established curriculum; the subjects vary from year to year. Three classes or a three-hour seminar.
Close icon
Data, Models, and Uncertainty in the Natural Sciences
This course is for students who want to turn observations into models and subsequently evaluate their uniqueness and uncertainty. Three main topics, taught on the chalkboard, are elementary statistics (inference), heuristic time series (Fourier) analysis, and model parameter estimation via matrix inverse methods. Prerequisites: MAT 201 and 202. Theory lectures and classroom Matlab instruction in alternating weeks. Two 90-minute lectures/classes.
Close icon
Introductory Seismology
Fundamentals of seismology and seismic wave propagation. Introduction to acoustic and elastic wave propagation concepts, observational methods, and inferences that can be drawn from seismic data about the deep planetary structure of the Earth, as well as about the occurrence of oil and gas deposits in the crust. Prerequisites: PHY 104 and MAE 305 (can be taken concurrently), or permission of the instructor. Two 90-minute classes.