Global Arc

1
Search International Offerings

You can now simultaneously browse international opportunities and on-campus courses; the goal is to plan coursework — before and/or after your trip — that will deepen your experiences abroad.

2
Add Your Favorites

Log in and add international activities and relevant courses to your Global Arc.

3
Get Advice

Download your Arc and share with your academic adviser, who can help you refine your choices.

4
Enroll, Apply and Commit

Register for on-campus classes through TigerHub, and apply for international experiences using Princeton’s Global Programs System.

5
Revisit and Continue Building

Return to the Global Arc throughout your Princeton career as you delve deeper into your interests. 

Refine search results

Subject

Displaying 21 - 30 of 35
Close icon
Chemical and Biological Engr
Energetics of Biological Macromolecules
This course explores the physical chemistry of biological macromolecules with the goal of relating fundamental concepts to challenges in protein engineering and biotechnology. We develop expression for the interaction energy between biological macromolecules or fragments of these molecules. We show how these energy expressions result in the thermodynamic and kinetic properties of biological macromolecules. In doing so, we emphasize the properties and interactions of proteins, with a focus on three areas: protein folding and stability, protein-protein interactions and enzyme catalysis.
Close icon
Chemical and Biological Engr
The Cell as a Chemical Reactor
Presents a framework for the analysis of cellular responses, such as proliferation, migration, and differentiation. Emphasis on mechanistic models of biotransformation, signal transduction, and cell-cell communication in tissues. Focuses first on unit operations of cell physiology transcription, translation, and signal transduction. Models of these processes will rely on tools of reaction engineering and transport. Process dynamics and control will then be used to analyze the regulatory structure of networks of interacting genes and proteins. Prerequisites: MOL 214 and MAE 305 or their equivalents.
Close icon
Chemical and Biological Engr
Introduction to the Mechanics and Dynamics of Soft Living Matter
This course introduces the concepts of soft condensed matter and their use in understanding the mechanical properties, dynamic behavior, and self-assembly of living biological materials. We will take an engineering approach that emphasizes the application of fundamental physical concepts to a diverse set of problems taken from the literature, including mechanical properties of biopolymers and the cytoskeleton, directed and random molecular motion within cells, aggregation and collective movement of cells, and phase transitions and critical behavior in the self-assembly of lipid membranes and intracellular structures.
Close icon
Chemical and Biological Engr
Biomolecular Engineering
This course will focus on the design and engineering of biomacromolecules. After a brief review of protein and nucleic acid chemistry and structure, we will delve into rational, evolutionary, and computational methods for the design of these molecules. Specific topics to be covered include aptamers, protein and RNA-based switches and sensors, unnatural amino acids and nucleotides, enzyme engineering, and the integration of these parts via synthetic biology efforts. Two lectures.
Close icon
Chemical and Biological Engr
Quantitative Physiology
A treatment of the quantitative tools to understand the human body. Course reviews cell biology and anatomy, then examines cells, tissues, and organs using principles from engineering kinetics and transport processes. Topics include: cell physiology; organ system physiology (including the cardiovascular, renal, and respiratory systems); and pathophysiology. Clinical treatments for human disease will also be analyzed.
Close icon
Chemical and Biological Engr
The Physical Basis of Human Disease
This course covers major diseases (cancer, diabetes, heart disease, infectious diseases), the physical changes that inflict morbidity and mortality, the design constraints for treatment, and emerging technologies that take into account these physical hurdles. Taking the perspective of the design constraints on the system (that is, the mass transport and biophysical limitations of the human body), the course will survey recent results from the fields of drug delivery, gene therapy, tissue engineering, and nanotechnology. Two lectures.
Close icon
Chemical and Biological Engr
Chemical Reaction Engineering
Stoichiometry and mechanisms of chemical reaction rates, both homogeneous and catalytic; adsorption, batch, continuous flow, and staged reactors; coupling between chemical reaction rates and mass, momentum, and energy transport; stability; optimization of reactor design. Application to environmental and industrial problems. Two lectures, one preceptorial. Prerequisites: CBE 246, CBE 250, and CBE 341.
Close icon
Chemical and Biological Engr
Design, Synthesis, and Optimization of Chemical Processes
Introduction to chemical process flow-sheeting; process design, sizing and cost estimation of total processes; process economics; introduction to optimization, linear programming, integer programming, and nonlinear programming; heat integration methods, minimum utility cost, minimum number of units, network optimization. Two lectures, one laboratory. Prerequisites: CBE 341, CBE 346, and CBE 441.
Close icon
Chemical and Biological Engr
Process Control
A quantitative study of the principles of process dynamics and control. Dynamic behavior of chemical process elements; analysis and synthesis of linear feedback control systems with special emphasis on frequency response techniques and scalar systems. Two lectures. Prerequisite: MAE 305, which may be taken concurrently.
Close icon
Chemical and Biological Engr
Metabolic Engineering
Introduction to engineering metabolism. The objective of this course is to introduce students to current techniques and challenges within the field of metabolic engineering. Specific topics include introduction to metabolism, transcriptional regulation, signal transduction, flux balance analysis, and metabolic flux analysis. Designed for upper division students in engineering, chemistry, and molecular biology. Two lectures. Prerequisites: MOL 214 or equivalent.