Global Arc

1
Search International Offerings

You can now simultaneously browse international opportunities and on-campus courses; the goal is to plan coursework — before and/or after your trip — that will deepen your experiences abroad.

2
Add Your Favorites

Log in and add international activities and relevant courses to your Global Arc.

3
Get Advice

Download your Arc and share with your academic adviser, who can help you refine your choices.

4
Enroll, Apply and Commit

Register for on-campus classes through TigerHub, and apply for international experiences using Princeton’s Global Programs System.

5
Revisit and Continue Building

Return to the Global Arc throughout your Princeton career as you delve deeper into your interests. 

Refine search results

Subject

Displaying 11 - 20 of 67
Close icon
Electrical & Computer Eng
The Computing Age
The past several decades have seen an exponential growth in computing as reflected in modern computers as well as consumer products such as music/video players and cell phones. This course will explore the reasons for this growth through studying the core principles of computing. It will cover representation of information including video and music, the design of computers and consumer devices, and their efficient implementation using computer chips. Finally, it will examine the technological factors that will likely limit future growth and discuss the societal impact of this outcome. Two 90-minute lectures, one three-hour laboratory.
Close icon
Electrical & Computer Eng
Sophomore Independent Work
Provides an opportunity for a student to concentrate on a state-of-the-art project in electrical engineering. Topics may be selected from suggestions by faculty members or proposed by the students. The final choice must be approved by the faculty advisor. There is no formal reading list; however, a literature search is a normal part of most projects.
Close icon
Electrical & Computer Eng
Sophomore Independent Work
Provides an opportunity for a student to concentrate on a state of the art project in electrical engineering. Topics may be selected from suggestions by faculty members or proposed by the students. The final choice must be approved by the faculty advisor. There is no formal reading list; however, a literature search is a normal part of most projects.
Close icon
Electrical & Computer Eng
Designing Real Systems
This course focuses on the science, engineering, and design of the highly integrated systems that dominate many of today's devices. Analysis of systems, subsystems, and basic principles will be covered, with an emphasis on hardware-software optimization, sampling and digitization, signal and noise, feedback and control, and communication. Prerequisites: ELE 201, ELE 203, ELE 206.
Close icon
Electrical & Computer Eng
Robotic and Autonomous Systems Lab
Comprehensive laboratory-based course in electronic system design and analysis. Covers formal methods for the design and analysis of moderately complex real-world electronic systems. Course is centered around a semester-long design project involving a computer-controlled vehicle designed and constructed by teams of two students. Integrates microprocessors, communications, and control. Prerequisites: ECE 201 and 203.
Close icon
Electrical & Computer Eng
Wave Phenomena in Engineering
This course covers a unified treatment of wave phenomena in engineering physics, with examples from materials science, optics, and quantum mechanics. Specific topics include mechanical and acoustic waves, Maxwell's equations and electromagnetic waves, wave-particle duality and Schrodinger's equation, dispersion, diffraction, and interference. Reflection and refraction from boundaries, guided waves, transmission lines, and waves in periodic/photonic structures will also be covered.
Close icon
Electrical & Computer Eng
Electronic Circuits: Devices to ICs
The course will cover topics related to electronic system design through the various layers of abstraction from devices to ICs. The emphasis will be on understanding fundamental system-design tradeoffs, related to the speed, precision, power with intuitive design methods, quantitative performance measures, and practical circuit limitations. The understanding of these fundamental concepts will prepare students for a wide range of advanced topics from circuits and systems for communication to emerging areas of sensing and biomedical electronics.
Close icon
Electrical & Computer Eng
Electronic and Photonic Devices
Intro to fundamentals and operations of semiconductor devices and sensors and micro/nano fabrication technologies used to make them. Devices include field-effect transistors, photodetectors and solar cells, light-emitting diodes and lasers. Applications include: computing and microchips, optical transmission of info (the internet backbone), displays and renewable energy. Students will fabricate their own devises in a clean room and test via microprobes. Special emphasis placed on the interplay between the material properties, fabrication capabilities, device performance and ultimate system performance. Prerequisites:MAT103-104 and PHY103-104.
Close icon
Electrical & Computer Eng
Solid-State Devices
The physics and technology of solid-state devices. Topics include: p-n junctions and two terminal devices, transistors, silicon controlled rectifiers, field effect devices, silicon vidicon and storage tubes, metal-semiconductor contacts and Schottky barrier devices, microwave devices, junction lasers, liquid crystal devices, and fabrication of integrated circuits. Three hours of lectures. Prerequisite: 308 or the equivalent.
Close icon
Electrical & Computer Eng
Principles of Quantum Engineering
Fundamentals of quantum mechanics and statistical mechanics needed for understanding the principles of operation of modern solid state and optoelectronic devices and quantum computers. Topics covered include Schrödinger Equation, Operator and Matrix Methods, Quantum Statistics and Distribution Functions, and Approximation Methods, with examples from solid state and materials physics and quantum electronics. Prerequisites: (PHY 103 or PHY 105) and (PHY 104 or PHY 106) or EGR 151 and EGR 153. MAT 201 and MAT 202, or EGR 152 and EGR 154.