Global Arc

1
Search International Offerings

You can now simultaneously browse international opportunities and on-campus courses; the goal is to plan coursework — before and/or after your trip — that will deepen your experiences abroad.

2
Add Your Favorites

Log in and add international activities and relevant courses to your Global Arc.

3
Get Advice

Download your Arc and share with your academic adviser, who can help you refine your choices.

4
Enroll, Apply and Commit

Register for on-campus classes through TigerHub, and apply for international experiences using Princeton’s Global Programs System.

5
Revisit and Continue Building

Return to the Global Arc throughout your Princeton career as you delve deeper into your interests. 

Refine search results

Subject

Displaying 41 - 50 of 67
Close icon
Electrical & Computer Eng
Micro-Nanofabrication and Thin-Film Processing
This course will investigate the technology and underlying science of micro-and nano-fabrication, which are the methods used to build billions of electronic and optoelectronic devices on a chip, as well as general small sensors and actuators generally referred to as micro-electromechanical systems (MEMS). The general approach involves deposition modification, and patterning of layers less than one-micrometer thick, hence the generic term 'thin-film' processing. Topics to be covered film deposition and growth via physical and chemical vapor deposition, photolithography, pattern transfer, plasma-processing, ion-implantation, and vacuum science.
Close icon
Electrical & Computer Eng
Electromagnetism and Modern Applications
The course will discuss electromagnetism (mostly classical electromagnetism) and its applications in modern day science and technology, with an emphasis on sensing and communication. The emphasis will be on fundamental theories and how they influence practical application ranging from biosensing, to modern day wireless, wire line communication and radar architectures along with multiple antenna array systems.
Close icon
Electrical & Computer Eng
Bioelectronics and Biosensors
Bioelectronics plays an increasingly vital role in fundamental research, therapeutics, and everyday life. This course will explore the basic principles of bioelectronics and their applications in biomedicine. The first part of the course will cover the fundamentals of bioelectricity, different types of biosensors, and related signal processing. The second part of the course will introduce the interface between bioelectronics and biological systems and the applications of bioelectronics devices in neuroscience, cardiology, tissue engineering, and wearable technologies.
Close icon
Electrical & Computer Eng
Biomedical Imaging
This course gives a general introduction to biological and biomedical imaging. Topics covered include basic imaging theory, microscopy, tomography, and imaging through tissue. Both physical and computational imaging will be covered, across a variety of different modalities (including visible light, x-ray, MRI, and ultrasound). The gaps between current technology and limits suggested by information theory will be discussed.
Close icon
Electrical & Computer Eng
Optical and Quantum Electronics
Fundmentals of light-matter interactions, waveguides and resonators, nonlinear optics and lasers.
Close icon
Electrical & Computer Eng
Optical and Photonic Systems for Environmental Sensing
This class will teach students about optical and photonic sensing technologies and their applications to environmental monitoring. The course will contain elements of atmospheric science and Earth observation, fundamentals of optics, photonics and laser physics, as well as a survey of modern optical and spectroscopic sensing applications.
Close icon
Electrical & Computer Eng
Quantum Optics
Semiclassical field theory of light-matter interactions (Maxwell-Bloch equations). Quantum theory of light, vacuum fluctuations and photons. Quantum states and coherence properties of the EM field, photon counting and interferometry. Quantum theory of light-matter interactions, Jaynes-Cummigns (JC) model. Physical realizations of JC model, case study:circuit QED. Quantum theory of damping. Resonance fluorescence. Coupled quantum non-linear systems: Lattice CQED, Superradiance
Close icon
Electrical & Computer Eng
Experimental Methods in Quantum Computing
This course aims to introduce students to the basics of experimental quantum information processing. Students will gain hands-on experience with several qubit platforms, including single photons, nuclear spins (NMR), electron spins (NV centers in diamond), and superconducting qubits. Additionally, students will learn data analysis and signal processing techniques relevant for a wide range of quantum computing platforms.
Close icon
Electrical & Computer Eng
Photonics and Light Wave Communications
This course provides an introduction to the state-of-the-art in photonic technology and systems, focusing on high performance fiber-optic telecommunication systems of silicon photonics. The basic physical principles and performance characteristics of optical fibers, lasers, detectors, optical amplifiers and dispersion management will be discussed. The design and performance analysis of photonic systems will be presented.
Close icon
Electrical & Computer Eng
Design with Nanotechnologies
Introduction to nanotechnologies; threshold logic/majority logic and their applications to RTDs, QCA and SETs; nanowire based crossbars and PLAs; carbon nanotube based circuits; double-gate CMOS-based circuits; reversible logic for quantum computing; non-volatile memory; nanopipelining; testing; and defect tolerance. Two 90-minute lectures. Prerequisite: ELE 206.