Global Arc

1
Search International Offerings

You can now simultaneously browse international opportunities and on-campus courses; the goal is to plan coursework — before and/or after your trip — that will deepen your experiences abroad.

2
Add Your Favorites

Log in and add international activities and relevant courses to your Global Arc.

3
Get Advice

Download your Arc and share with your academic adviser, who can help you refine your choices.

4
Enroll, Apply and Commit

Register for on-campus classes through TigerHub, and apply for international experiences using Princeton’s Global Programs System.

5
Revisit and Continue Building

Return to the Global Arc throughout your Princeton career as you delve deeper into your interests. 

Refine search results

Subject

Displaying 2321 - 2330 of 4003
Close icon
Environmental Materials Chemistry: Researching in Field and Laboratory
The course covers concepts related to the chemistry of inorganic and organic materials found in the pristine and contaminated settings in the Earth surface environments, with an introduction to the modern field sampling techniques and advanced laboratory analytical and imaging tools. Different materials characterization methods, such as optical, infrared, and synchrotron X-ray spectroscopy and microscopy, will also be introduced. Field sampling and analysis of materials from diverse soil and coastal marine environments will be the focus during the second half of the semester.
Close icon
Sedimentology
A treatment of the physical and chemical processes that shape Earth's surface, such as solar radiation, i.e., deformation of the solid Earth, and the flow of water (vapor, liquid, and solid) under the influence of gravity. In particular, the generation, transport, and preservation of sediment in response to these processes are studied in order to better read stories of Earth history in the geologic record and to better understand processes involved in modern and ancient environmental change. Prerequisites: MAT 104, PHY 103, CHM 201, or equivalents.Two lectures, required spring break field trip, students do lab work as groups on their own time
Close icon
Global Geophysics
An introduction to the fundamental principles of global geophysics. Taught on the chalkboard, in four parts, the material builds up to form a final coherent picture of (how we know) the structure and evolution of the solid Earth: gravity, magnetism, seismology, and geodynamics. The emphasis is on physical principles including the mathematical derivation and solution of the governing equations. Prerequisites: MAT 201 or 203, PHY 103/104 or PHY 105/106. Two 90-minute lectures.
Close icon
Rocks
This course serves as an introduction to the processes that govern the distribution of different rocks and minerals in the Earth. Students learn to make observations from the microscopic to continental scale and relate these to theoretical and empirical thermodynamics. The goal is to understand the chemical, structural, and thermal influences on rock and mineral formation and how this in turn influences the plate tectonic evolution of our planet. This course has two lectures, one lab and a required Spring Break fieldtrip. Prerequisite: One introductory GEO course and GEO 378.
Close icon
Structural Geology
The nature and origin of the deformed rocks composing the crust of Earth considered at scales ranging from atomic to continental. Tectonics and regional geology of North America. Two lectures, one lab and a required Fall Break fieldtrip.
Close icon
Planetary Systems: Their Diversity and Evolution
Examines the diversity of recently discovered planetary systems in terms of fundamental physical and chemical processes and what this diversity implies about the origin and evolution of our own planetary system. Topics include: the formation and dynamics of planets and satellites, planetary migration, the evolution of planetary interiors, surfaces and atmospheres, the occurrence of water and organics, and the habitability of planets and planetary systems. Recent discoveries from planetary missions and extrasolar planet observations are emphasized. Prerequisites: GEO 207, 255, or instructor's permission. Two 90-minute lectures.
Close icon
The Physics of Glaciers
Glaciers and ice sheets are important elements of Earth's global climate system. This course introduces undergraduate and graduate students to the history of ice on Earth, contemporary glaciology, and the interactions between climate, glaciers, landforms, and sea level. Drawing from basic physical concepts, lab experiments, numerical modeling, and geological observations, we tackle important physical processes in glaciology, and equip students with data analysis and modeling skills. Students will gain an appreciation for the importance of ice sheets for the global climate system, and the large gaps that remain in our understanding.
Close icon
Mineralogy
Minerals are the fundamental building blocks of the Earth. They are the primary recorders of its past history. A knowledge of minerals and their properties is an essential underlying component of most other disciplines in the geosciences. This course will provide a survey of the properties of the major rock-forming minerals. Topics include crystallography, crystal chemistry, mineral thermodynamics and mineral occurrence. Emphasis will be on the role of minerals in understanding geological processes. Laboratories will focus on hand specimen identification and modern analytical techniques.
Close icon
Microbial Life - A Geobiological View
Microbes were the first life forms on Earth and are the most abundant life forms today. Their metabolisms underpin the cycling of carbon, nitrogen, and other important elements through Earth systems. This course will cover the fundamentals of microbial physiology and ecology and examine how microbial activities have shaped modern and ancient environments, with the goal of illustrating the profound influence of microbial life on our planet for over 3 billion years.
Close icon
Environmental Microbiology
The study of microbial biogeochemistry and microbial ecology. Beginning with the physical/chemical characteristics and constraints of microbial metabolism, we will investigate the role of bacteria in elemental cycles, in soil, sediment, and marine and freshwater communities, in bioremediation and chemical transformations. Prerequisites: One 300-level course in chemistry or biology, or instructor's permission. Two 90-minute classes, this course is normally offered in the Spring.