Global Arc

1
Search International Offerings

You can now simultaneously browse international opportunities and on-campus courses; the goal is to plan coursework — before and/or after your trip — that will deepen your experiences abroad.

2
Add Your Favorites

Log in and add international activities and relevant courses to your Global Arc.

3
Get Advice

Download your Arc and share with your academic adviser, who can help you refine your choices.

4
Enroll, Apply and Commit

Register for on-campus classes through TigerHub, and apply for international experiences using Princeton’s Global Programs System.

5
Revisit and Continue Building

Return to the Global Arc throughout your Princeton career as you delve deeper into your interests. 

Refine search results

Subject

Displaying 1971 - 1980 of 4003
Close icon
Civil and Environmental Engr
Global Environmental Issues
This course examines a set of global environmental issues including population growth, ozone layer depletion, climate change, air pollution, the environmental consequences of energy supply and demand decisions and sustainable development. It provides an overview of the scientific basis for these problems and examines past, present and possible future policy responses. Individual projects, presentations, and problem sets are included. Prerequisites: AP Chemistry, CHM 201, or permission of instructor. Two lectures, one precept.
Close icon
Civil and Environmental Engr
Water, Engineering, and Civilization
A modern view of water resources, from the physical and engineering principles appealing to CEE students to the broader historical and social aspects of sustainable development of interest to the environmental sciences and humanities. Teams of students will develop interconnected design projects on water distribution, hydrologic hazards, and sustainable use of soil and water resources, with emphasis on interdisciplinary communication among stakeholders. Guest lectures will cover some of the historical, political, and legal aspects of the works, complemented by a visit to the world-renown hydraulic infrastructure of the Catskills-NYC aqueduct.
Close icon
Civil and Environmental Engr
Origami Engineering
This class acquaints the student with the state-of-art concepts and algorithms to design and analyze origami structures. Students will learn how to understand, create and transform geometries by folding and unfolding concepts, and thus apply origami to solve engineering and societal problems. In addition, using origami as a tool, we will outreach to some fundamental concepts in differential geometry.
Close icon
Civil and Environmental Engr
Matrix Structural Analysis and Introduction to Finite-Element Methods
This course presents the Matrix Structural Analysis (MSA) and Finite Element Methods (FEM) in a cohesive framework. The first half of the semester is devoted to MSA topics: derivation of truss, beam and frame elements; assembly and partitioning of the global stiffness matrix; equivalent nodal loads. The second half covers the following FEM topics: strong and weak forms of boundary value problems, and linear elasticity, Galerkin approximations, constant strain triangle, isoparametric quads. Modern topics will be introduced. MATLAB is used for computer assignments. Prerequisite: CEE205 or MAE223 or permission of instructor. Two 90-min lectures.
Close icon
Civil and Environmental Engr
Structural Dynamics and Earthquake Engineering
Analysis of forces and deformations in structures under dynamic loads. Idealization as discrete parameter systems. Single and multiple degrees of freedom. Response analysis under free vibration, harmonic, impulsive and random dynamic loads. Time and frequency domains. Earthquake phenomena from the engineering point of view. Seismic waves and power spectra. Measurement of strong ground motion. The concepts of response spectra, structural response to earthquakes, design criteria, and seismic safety. Prerequisite: 361 or instructor
Close icon
Civil and Environmental Engr
Materials in Civil Engineering
An introductory course on materials used civil and environmental engineering. Lectures on structure and properties of construction materials including concrete, steel, glass and timber; fracture mechanics; strength testing; mechanisms of deterioration; impact of material manufacturing on the environment. Labs on brittle fracture, heat treatment of steel, strength of concrete, mechanical properties of wood. One lecture, one three-hour laboratory. Prerequisites: CEE 205 or MAE223.
Close icon
Civil and Environmental Engr
Soil Mechanics and Geotechnical Engineering
The first half of the semester will cover topics on Classical Soil Mechanics: Physical and engineering properties of soils; soil classification and identification methods; site exploration; sampling; laboratory and in-situ testing techniques; shear strength; bearing capacity; earth pressure; slope stability; permeability and seepage. The second half of the semester will cover topics on Application of Soil Mechanics in Civil Engineering: Earth retaining structures; deep foundations, ground improvement; tunneling; levees; and construction and contracting implications. Prerequisite: CEE 205 or MAE223.
Close icon
Civil and Environmental Engr
Design of Reinforced Concrete Structures
Materials in reinforced concrete. Flexural analysis and design of beams. Shear and diagonal tension in beams. Short columns. Frames. Serviceability. Bond, anchorage, and development length. Slabs. Special topics. Introduction to design of prestressed concrete. Introduction to design of steel structures. Two 90-minute lectures. Prerequisite: CEE 205.
Close icon
Civil and Environmental Engr
The Fractal Beauty of Landscapes
No Description Available
Close icon
Civil and Environmental Engr
Autonomous Fabrication and Robotics
An introductory course with several demonstration and hands-on components of fabrication with autonomous and robotic systems. Covers formal methods of fabrication and programming of moderately complex elements, including related fabrication platforms, extrusion platforms, various materials design, and ultimately toolpath design. The course is centered around lectures with laboratory/virtual studio individual and team-based assignments involving computer-controlled additive manufacturing and robotic systems, student reading, and peer-reviewed presentation and reporting assignments.