Global Arc

1
Search International Offerings

You can now simultaneously browse international opportunities and on-campus courses; the goal is to plan coursework — before and/or after your trip — that will deepen your experiences abroad.

2
Add Your Favorites

Log in and add international activities and relevant courses to your Global Arc.

3
Get Advice

Download your Arc and share with your academic adviser, who can help you refine your choices.

4
Enroll, Apply and Commit

Register for on-campus classes through TigerHub, and apply for international experiences using Princeton’s Global Programs System.

5
Revisit and Continue Building

Return to the Global Arc throughout your Princeton career as you delve deeper into your interests. 

Refine search results

Subject

Displaying 2831 - 2840 of 4003
Close icon
Oper Res and Financial Engr
Electronic Commerce
Electronic commerce, traditionally the buying and selling of goods using electronic technologies, extends to essentially all facets of human interaction when extended to services, particularly information. The course focuses on both the software and the hardware aspects of traditional aspects as well as the broader aspects of the creation, dissemination and human consumption electronic services. Covered will be the physical, financial and social aspects of these technologies. Two 90-minute lectures, one 50-minute precept.
Close icon
Oper Res and Financial Engr
Regression and Applied Time Series
An introduction to popular statistical approaches in regression and time series analysis. Topics will include theoretical aspects and practical considerations of linear, nonlinear, and nonparametric modeling (kernels, neural networks, and decision trees). Prerequsites: ORF 245 and ORF 309 or instructor's permission. Two lectures, one lab, and one precept.
Close icon
Oper Res and Financial Engr
Statistical Design of Experiments
Major methods of statistics as applied to the engineering and physical sciences. The central theme is the construction of empirical models, the design of experiments for elucidating models, and the applications of models for forecasting and decision making under uncertainty. Three lectures. Prerequisite: 245 or equivalent.
Close icon
Oper Res and Financial Engr
Fundamentals of Queueing Theory
This is an introduction to the stochastic models inspired by the dynamics of resource sharing. Topics discussed include: early motivating communication systems (telephone and computer networks); modern applications (call centers, healthcare operations, and urban planning for smart cities); and key formulas (from Erlang blocking and delay to Little's law). We also review supporting stochastic theories like equilibrium Markov chains along with Markov, Poisson and renewal processes. Prerequisite: ORF 309 or equivalent.
Close icon
Oper Res and Financial Engr
Introduction to Monte Carlo Simulation
An introduction to the uses of simulation and computation for analyzing stochastic models and interpreting real phenomena. Topics covered include generating discrete and continuous random variables, stochastic ordering, the statistical analysis of simulated data, variance reduction techniques, statistical validation techniques, nonstationary Markov chains, and Markov chain Monte Carlo methods. Applications are drawn from problems in finance, manufacturing, and communication networks. Students will be encouraged to program in Python. Office hours will be offered for students unfamiliar with the language. Prerequisites: ORF 245 and ORF 309.
Close icon
Oper Res and Financial Engr
Sequential Decision Analytics and Modeling
The management of complex systems through the control of physical, financial and informational resources. The course focuses on developing mathematical models for resource allocation, with an emphasis on capturing the role of information in decisions. The course seeks to integrate skills in statistics, stochastics and optimization using applications drawn from problems in dynamic resource management which tests modeling skills and teamwork. Prerequisites: ORF 245, ORF 307 and ORF 309, or equivalents. Two lectures, one precept.
Close icon
Oper Res and Financial Engr
Dynamic Programming
An introduction to stochastic dynamic programming and stochastic control. The course deals with discrete and continuous-state dynamic programs, finite and infinite horizons, stationary and nonstationary data. Applications drawn from inventory management, sequential games, stochastic shortest path, dynamic resource allocation problems. Solution algorithms include classical policy and value iteration for smaller problems and stochastic approximation methods for large-scale applications. Prerequisites: 307 and 309.
Close icon
Oper Res and Financial Engr
Optimal Learning
This course develops several methods that are central to modern optimization and learning problems under uncertainty. These include dynamic programming, linear quadratic regulator, Kalman filter, multi-armed bandits and reinforcement learning. Representative applications and numerical methods are emphasized. Prerequisite: ORF 309. Two lectures.
Close icon
Oper Res and Financial Engr
Financial Risk and Wealth Management
This course covers the basic concepts of measuring, modeling and managing risks within a financial optimization framework. Topics include single and multi-stage financial planning systems. Implementation from several domains within asset management and goal based investing. Machine learning algorithms are introduced and linked to the stochastic planning models. Python and optimization exercises required. Prerequisites: ORF 245, ORF 309, ORF 335 or ECO 465 (concurrent enrollment is acceptable) or instructor's permission. Two lectures, one precept.
Close icon
Oper Res and Financial Engr
High Frequency Markets: Models and Data Analysis
An introduction to the theory and practice of high frequency trading in modern electronic financial markets. We give an overview of the institutional landscape and basic empirical features of modern equity, futures, and fixed income markets. We discuss theoretical models for market making and price formation. Then we dig into detailed empirical aspects of market microstructure and how these can be used to construct effective trading strategies. Course work will be a mixture of theoretical and data-driven problems. Programming environment will be a mixture of the R statistical environment, with the Kdb database language.