Global Arc

1
Search International Offerings

You can now simultaneously browse international opportunities and on-campus courses; the goal is to plan coursework — before and/or after your trip — that will deepen your experiences abroad.

2
Add Your Favorites

Log in and add international activities and relevant courses to your Global Arc.

3
Get Advice

Download your Arc and share with your academic adviser, who can help you refine your choices.

4
Enroll, Apply and Commit

Register for on-campus classes through TigerHub, and apply for international experiences using Princeton’s Global Programs System.

5
Revisit and Continue Building

Return to the Global Arc throughout your Princeton career as you delve deeper into your interests. 

Refine search results

Subject

Displaying 1261 - 1270 of 4003
Close icon
Energy Studies
Fundamentals of Biofuels
What are biofuels, and why are we making them? How can they help address our energy needs in a warming planet? What are 1st, 2nd, and 3rd generation biofuels? What is the controversy surrounding the food versus fuel debate? Will thermocatalysis or genetic engineering improve biofuel production? Can we make biofuels directly from light or electricity? These are some of the questions we will answer through discussions during lecture. In precept we will discuss primary literature, relevant news reports, and studies on the socio-economic impact of biofuels.
Close icon
Energy Studies
Resource Recovery for a Circular Economy
The course will focus on emerging science and technologies that enable the transition from our traditional linear economy (take, make, waste) to a new circular economy (reduce, reuse, recycle). It will discuss the fundamental theories and applied technologies that are capable of converting traditional waste materials or environmental pollutants such as wastewater, food waste, plastics, e-waste, and CO2, etc. into value-added products including energy, fuels, chemicals, and food products.
Close icon
Energy Studies
Rapid Switch: The Energy Transition Challenge to a Low-carbon Future
The Paris Accord signaled a global consensus on climate risks and the need for a rapid switch to clean energy. Not well comprehended are the scale and pace of the needed transformations. Bottlenecks encountered during rapid, large-scale change, must be anticipated and addressed to achieve climate goals. Princeton's Net-Zero America study (2021) provides highly-granular insights on the scale and pace of change and on impacts to the environment, finances, jobs and more. Students will build on that study to analyze sub-regional energy transitions through multi-disciplinary lenses to assure the successful decarbonization of the U.S.
Close icon
Energy Studies
Electric Power: From Electronics to the Grid
This course provides a broad overview of power electronics and smart grids. We introduce the connection between Watts and Bytes in intelligently controlled power electronics and smart energy systems, develop a fundamental understanding about power electronics from devices, circuits, systems to control, and review operation principles of the modern energy systems from power generation, transmission, to utilization. Numerous examples will be presented, including power electronics for renewable energy systems, information systems, robotics, and transportation electrification. Students build a real power converter at the end of the course.
Close icon
Energy Studies
Optimization for the Design and Analysis of Energy Systems
The goal of the course is to (1) learn basic principles underpinning energy systems, (2) learn the basic theory, modeling techniques, and software tools for optimization, (3) apply optimization methods to design and analyze energy systems.
Close icon
Energy Studies
Renewable Energy Systems
A thorough introduction to renewable energy systems. Students will learn the physical, chemical, and engineering principles underlying renewable energy (RE) technologies: principles of operation of RE systems and technical challenges in planning and installing them; environmental and social impacts of energy technologies; challenges of integrating RE sources into existing energy systems; energy technology innovation systems; and economics of RE systems. Implications of transition to RE-dominated systems will be evaluated. The national and international policy context for RE will also be discussed.
Close icon
Energy Studies
Negative Emission Technologies
This course examines the field of carbon capture, conversion, and storage. The course is interdisciplinary and surveys fundamental aspects of combustion, kinetics, material science, thermodynamics and electrochemistry. The class will survey the working principles of existing and emerging technologies that aim to make a critical impact on decarbonizing energy systems. Topics related to carbon capture and negative emission technologies will be discussed.
Close icon
Energy Studies
Introduction to the Electricity Sector-Engineering, Economics, and Regulation
This course provides an introduction to the electricity sector drawing on engineering, economics, and regulatory policy perspectives. It introduces the engineering principles behind various power generation technologies and transmission and distribution networks; the economics of electricity markets; and the regulation of electricity generation, transmission, distribution, and retail sales. Open challenges related to the growth of distributed energy resources, the transition to low-carbon electricity sources, and the role of the electricity sector in mitigating global climate change are also discussed.
Close icon
Energy Studies
Solar Energy Conversion
Principles and design of solar energy conversion systems. Quantity and availability of solar energy. Physics and chemistry of solar energy conversion: solar optics, optical excitation, capture of excited energy, and transport of excitations or electronic charge. Conversion methods: thermal, wind, photoelectric, photoelectrochemical, photosynthetic, biomass. Solar energy systems: low and high temperature conversion, photovoltaics. Storage of solar energy. Conversion efficiency, systems cost, and lifecycle considerations.
Close icon
Energy Studies
Wind Turbine Aerodynamics and Technology
The course addresses basic wind turbine technology such as aerodynamics, control and structural aspects. Theory will be provided that can be used to predict the aerodynamic loads on the wind turbine blades and their impact on the structure with respect to internal loads and deflections. The influence of the stochastic loads from atmospheric turbulence will be addressed and the structural dynamics of a wind turbine and possible instabilities will also be covered. Small computer programs will be written based on the lectured theory and verified in some papers.