Global Arc

1
Search International Offerings

You can now simultaneously browse international opportunities and on-campus courses; the goal is to plan coursework — before and/or after your trip — that will deepen your experiences abroad.

2
Add Your Favorites

Log in and add international activities and relevant courses to your Global Arc.

3
Get Advice

Download your Arc and share with your academic adviser, who can help you refine your choices.

4
Enroll, Apply and Commit

Register for on-campus classes through TigerHub, and apply for international experiences using Princeton’s Global Programs System.

5
Revisit and Continue Building

Return to the Global Arc throughout your Princeton career as you delve deeper into your interests. 

Refine search results

Subject

Displaying 1341 - 1350 of 4003
Close icon
Mech and Aerospace Engr
Engineering Design
Focus on design processes and procedures using modern engineering tools. Parametric design techniques are introduced in the computer-design laboratory along with simulation tools. Instruction in basic and computer-based manufacturing methods is given in the manufacturing laboratory. Teams of students conduct projects that involve the complete design cycle from concept and first principles through optimization, prototype, and test.
Close icon
Mech and Aerospace Engr
Mechanical Design
This course builds on the technical foundation established in 321, and extends the scope to include a range of advanced mechanical design. Teams of students will design and fabricate a wheeled robotic system that will draw upon multidisciplinary engineering elements. The robot will facilitate common daily tasks which vary each year. CAD, CAE, and CAM will be utilized in the design/simulation/prototype process. Labs are designed to reinforce and expand CAD and CAE skills. Two 90-minute lectures, one laboratory. Prerequisites: 321 or instructor's permission.
Close icon
Mech and Aerospace Engr
Aerospace Structures
Methods of stress analysis applied to lightweight structures such as airplane or spacecraft components. Topics covered include: Virtual work and energy methods, matrix methods and the foundations of finite element analysis, bending and buckling of thin plates, bending, shear and torsion of thin-walled beams of open and closed cross sections, structural idealization and its application to aerospace structures and an introduction to structural dynamics and vibrations. All this in the context of aerospace structural applications. An overview of common aircraft structural arrangements will be presented.
Close icon
Mech and Aerospace Engr
Structure and Properties of Materials
An introduction to the properties of engineering materials that emphasizes the correlation between atomic and microscopic structure and the macroscopic properties of the materials. Topics include structural, mechanical, thermodynamic, and design-related issues important to engineering applications. Two lectures, one preceptorial.
Close icon
Mech and Aerospace Engr
Energy for a Greenhouse-Constrained World
This course addresses, in technical detail, the challenge of changing the future global energy system to accommodate constraints on the atmospheric carbon dioxide concentration. Energy production strategies are emphasized, including renewable energy, nuclear fission and fusion, the capture and storage of fossil-fuel carbon, and hydrogen and low-carbon fuels. Efficient energy use is also considered, as well as intersections of energy with economic development, international security, local environmental quality, and human behavior and values. Two 90-minute lectures.
Close icon
Mech and Aerospace Engr
Aircraft Flight Dynamics
Introduction to the performance, stability, and control of aircraft. Fundamentals of configuration aerodynamics. Methods for analyzing the dynamics of physical systems. Characterization of modes of motion and desirable flying qualities. Two 90-minute lectures and one preceptorial. Prerequisites: 206 and 222.
Close icon
Mech and Aerospace Engr
Aircraft Design
Building on strength of materials and calculus, this course integrates physical laws to analyze stress and displacement fields in structures. The course introduces basic concepts and equations in three dimensions and then applies them to aircraft structures. Phenomena to be discussed include elastic anisotropy, bending, buckling, fracture, and fatigue. The course is important for anyone interested in structured design. Two 90-minute lectures. Prerequisites: 335 or instructor's permission.
Close icon
Mech and Aerospace Engr
Fluid Dynamics
Low-speed incompressible potential flow theory and high speed compressible flows. Low-speed topics include circulation, vorticity, d'Alembert's paradox, potential flows, and finite wing theory. High-speed topics include speed of sound, nozzles, shock waves, expansion waves, and effects of heat addition and friction. Three lectures, one preceptorial. Prerequisites: 221, 222 or instructor's permission.
Close icon
Mech and Aerospace Engr
Junior Independent Work
Independent work is intended for juniors doing only a one-term project. Students develop a topic of their own or select from a list of topics prepared by the faculty. They develop a work plan and select an adviser and are assigned a second reader. At the end of the term, students submit a written report. Enroll in either 339 for fall or 340 for spring. This course does not fulfill the departments independent work or thesis requirement.
Close icon
Mech and Aerospace Engr
Junior Independent Work with Design
Independent work with design is intended for juniors doing only a one-term project. Similar to 339, with the principal difference that the project must incorporate aspects and principles of design in a system, product, vehicle, device, apparatus, or other design element. At the end of the term, students submit a written report. Enroll in 339D for fall, or 340D for spring. This course does not fulfill the departments independent work or thesis requirement.